Dr. Eakin's MA 110 Exams From Fall 2007:

CAUTION: MA110 is not static : the course content, text, homework, and syllabus change from year to year. While the exam format will be the same, there should be no expectation that the Fall 2008 exams reflect those of previous years in content or problem selection.

Exam 1:
 Math 110-001, 002, 005
 September 21, 2007

Instructions: This examination consists of nine (9) questions on six (6) pages. Each question counts 10 points.
Please make sure you have a complete exam. Enter your name, section, and TA information at the top of this page and your name or initials on each of the other pages.

Please note that, you are expected to justify your answers by showing your work. Your work is what will be graded.
Unsupported answers are not worth anything.
"Answers" simply taken from calculators or estimated from graphs will receive no credit. (It is , of course, quite reasonable to use your calculator to cross-check your answers.)

Partial credit may be assigned.

The papers must be turned in at the end of class time. The scores on the in-class portion will be curved

(1) (10 points) Write $\frac{17}{23}-\frac{31}{19}$ in the form $\frac{A}{B}$ where A and B are integers. You do not have to express this fraction in lowest terms! (SHOW YOUR WORK!)
(2) (10 points) If $A=\frac{1}{5}, \quad B=\frac{1}{4}$, and $\frac{X+1}{X-2}=\frac{A}{B}$ then $\mathrm{X}=$ \qquad
Note that X must be expressed as a rational number (a ratio of two integers, not as a decimal. (SHOW YOUR WORK!)
(3) Decimal answers are fine for this problem. SHOW YOUR WORK

The circle in the diagram is centered at O and has a radius of 10 feet. If the length of the arc AB is 15 feet then:
a. (6 points) The angle AOB measures \qquad radians or \qquad degrees. (SHOW YOUR WORK!
b. (4 points) The area of the colored sector is \qquad square feet. (SHOW YOUR WORK!)

(4)
(a) (5 points) If $A=3-5 i$ is a complex number then $\frac{1}{A}=$ \qquad $+$
\qquad $i \quad$ (SHOW YOUR WORK!)
(b) (5 points) If X is a complex number such that $(3-5 i) X=11-7 i$ then $\mathrm{X}=$ (SHOW YOUR WORK!)
(5) (10 points) The coefficient of x^{4} when $\left(x^{3}-5 x^{2}+7 x-1\right)\left(2 x^{2}+x-1\right)$ is multiplied out and simplified is \qquad (SHOW YOUR WORK!)
(6)
(a) (5 points) If $(2 A-3 B)^{5}$ is expanded and simplified then the coefficient of $A^{2} B^{3}$ will be \qquad (SHOW YOUR WORK!)
(b) (5 points) If $(x-y)^{17}$ is expanded and simplified then the coefficeint of $x^{14} y^{3}$ will be (SHOW YOUR WORK!)
(7) (10 points) $\{2 x+3 y=11,4 x+2 y=6\}$ is a system of two linear equaitons in the variables x and y .
Use Cramer's Rule to determine x. Note you must use Cramer's Rule to get credit for the problem. (SHOW YOUR WORK!)
(8) (10 points) The sum of two numbers is 7 . Twice one of them plus three times the other is 9. . The numbers are \qquad and
(List them in either order. SHOW YOUR WORK!)
(9).
(a) (4 points) The determinant of the matrix $\left[\begin{array}{cc}7 & -3 \\ 4 & 5\end{array}\right]$ is \qquad (SHOW YOUR WORK!)
(b) (6 points) If $\mathrm{f}(x)=x^{5}-4 x^{3}-5 x+12$ and $\mathrm{g}(x)=-x^{3}+x^{2}+1$ then the degree of $\mathrm{f}(x) \mathrm{g}(x)$ is \qquad and the degree of $\mathrm{f}(x)+x^{2} \mathrm{~g}(x)$ is \qquad (SHOW YOUR WORK!

$* *$

Exam 2:
 Math 110-001, 002, 005 October 19, 2007

Instructions: (omitted)

1. The line L has two coordinate systems. In one system the coordinates of a point P are represented by the variable x. In that system $Z=Z(3)$ would denote that the x-coordinate of the point Z is 3 . In the other system the coordinates are represented by the variable x^{\prime}. In it, $\mathrm{Z}=$
$\mathrm{Z}^{\prime}(7)$ would denote that the x ' coordinate of the point Z is 7 . As indicated in the table below, the origin in x - coordinates is the point O and the unit point in x - coordinates is the point P . Also, as indicated in the table, the origin in x ' coordinates is A and the unit in x ' coordinates is B.
a. (4 points) Note that there are two answers to part a of this problem.

Use the information in the table to determine a formula of the form $x^{\prime}=a x+b$ for translating from x - coordinates to x ' coordinates.
Also, give a general formula of the same type for transforming from x^{\prime} coordinates to x coordinates .
$\left[\begin{array}{ccc}\text { point } & x \text {-coordinate } & x \text { ' coordinate } \\ \mathrm{O} & 0 & - \\ P & 1 & - \\ A & 3 & 0 \\ B & \frac{5}{2} & 1 \\ R & & 5\end{array}\right]$
b. (6 points) Fill in the missing entries in the table. There are three numbers to enter.
2. The point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the plane can be thought of as the complex number $x+i y$. If C is any complex number then there is a transformation of the plane defined by $\mathrm{T}(P)=C *(x+i y)$. Suppose T is such a transformation and T takes the point $\mathrm{A}=\mathrm{A}(2,3)$ to $\mathrm{T}(\mathrm{A})=\mathrm{T}(\mathrm{A})(14,-5)$. That is, the point with coordinates $(2,3)$ is taken to the point with coordinates $(14,-5)$.
a. (5 points) What is the complex number C ?
b. (5 points) If $B=B(-7,1)$ and $T(B)=T(B)(z, w)$ then what are z and w ? That is, what are the coordinates of $\mathrm{T}(\mathrm{B})$?
ANSWER $T(B)=($ \qquad , \qquad
3. For this problem $8 \mathrm{~km}=5$ miles

Town A is in a French-speaking country and town B is in an English speaking country. They are 100 miles apart and connected by a straight road. When giving directions to a point on the road between them the people in town A will say that it "x km from here "(i.e. from town A) while the people in town B will say that it is "x ' miles from here" (i.e. from town B). Thus every point on the road has an x -coordinate given it by town A and an x coordinate given it by town B .
a. (5 points) If the border is 30 miles from town A the people in town B will say that it is $\ldots \quad$ " miles from here".
b. (5 points) Give a general formula for calculating the x ' (miles from B) coordinate in terms of the $\mathrm{x}(\mathrm{km}$ from A) coordinate.
\qquad
4.
(a) (3 points) Recall that if a and b are integers then $\mathrm{a} \mid \mathrm{b}$ means that a divides b (i.e. a is a factor of b).
The integer d is said to be the greatest common divisor of the integers m and n if:
i. $0 \leq d$,
ii: $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$, and
iii. if $\mathrm{q} \mid \mathrm{m}$ and $\mathrm{q} \mid \mathrm{n}$ then \qquad
(b) (2 points) Suppose we have a polynomial $\mathrm{f}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$ and we know that it is monic of degree 3 .
Then we know $\quad a_{3}=$ \qquad and $a_{4}=$ \qquad
(c) (2 points) Recall that if a and b are integers then $\mathrm{a} \mid \mathrm{b}$ means that a divides b (i.e. a is a factor of b)..
The integer L is the least common multiple of the integers m and n if
i. $0 \leq L$,
ii. $\mathrm{m} \mid \mathrm{L}$ and $\mathrm{n} \mid \mathrm{L}$, and
iii if $\mathrm{m} \mid \mathrm{q}$ and $\mathrm{n} \mid \mathrm{q}$ then \qquad
(d) (3 points) Suppose $f(x), g(x)$ and $d(x)$ are polynomials with $f(x)$ of degree 7, $g(x)$ of degree 5 , and $\mathrm{d}(\mathrm{x})$ is of degree 3 and we use long division to write $\mathrm{f}(x) \mathrm{g}(x)=\mathrm{d}(x) \mathrm{q}(x)+\mathrm{r}(x)$

The possible degrees for the remainder, $r(x)$, are \qquad and the degree of $\mathrm{q}(\mathrm{x})$, the quotient is \qquad —.
5. a. (6 points) If $2567=a_{0}+a_{1} 5+a_{2} 5^{2}+a_{3} 5^{3}+a_{4} 5^{4}+a_{5} 5^{5}+a_{6} 5^{6}+a_{7} 5^{7} \quad$ and each of $a_{0}, a_{1}, \ldots, a_{7}$ is one of the integers $\{0,1,2,3,4\}$ then
$a_{0}=$ \qquad , and $a_{1}=$ \qquad
b. (4 points) If today is Friday then the day of the week 596 days from now will be
6.
a. (6 points) Complete the Arybhata algorithm table and use it to answer the questions below
$\left[\begin{array}{cccc} & 1 & 0 & 268 \\ -1 & 0 & 1 & 244 \\ -10 & 1 & -1 & 24 \\ & & & \\ & & & \\ & & & \end{array}\right]$
b. (1 point) The GCD of 268 and 244 is $\mathrm{d}=$ \qquad
c. (2 points) $\mathrm{d}=$ \qquad *268 + \qquad * 244
d. (1 point) The least common multiple of 268 and 244 is \qquad
7. Suppose you have a large collection of $\mathbf{3 3}$ gram weights and another large collection of $\mathbf{3 9}$ gram weights.
You have a pan balance and, as indicated in the diagram you want to use it to check that the weight of an object is exactly $\mathbf{1 5}$ grams.
a. (8 points) Use the table below to explain how to do this. Note the object (the cone in the diagram) is in the right pan so you must explain how many of each kind of weight to add to each pan if the object weghs exactly 15 grams and why it will balance.

$$
\left[\begin{array}{cccr}
& 1 & 0 & 39 \\
-1 & 0 & 1 & 33 \\
-5 & 1 & -1 & 6 \\
-2 & -5 & 6 & 3 \\
& 11 & -13 & 0
\end{array}\right]
$$

b. (2 points) Explain why it is not possible to check the weight of a 2 gram object with this set of weights.
8.
a. (4 points)

Complete the following Arybhata algorithm table and use it to answer the questions below. You do not need to show work on this problem.

b. (2 point) If $\mathrm{f}(\mathrm{x})=x^{5}-x^{4}-x^{2}+x$ and $\mathrm{g}(\mathrm{x})=2 x^{4}-2 x^{3}-x$ then
the MONIC GCD of $f(x)$ and $g(x)$ is \qquad
c. (2 points) Enter polynomials in the blanks If $\mathrm{d}(\mathrm{x})$ is the MONIC gcd of $x^{5}-x^{4}-x^{2}+x$ and $2 x^{4}-2 x^{3}-x$ then
\qquad * $\left(x^{5}-x^{4}-x^{2}+x\right)+$ \qquad * $\left(2 x^{4}-2 x^{3}-x\right)$
d. (2 points) Enter a constant in the first blank below and a polynomial in the second. (This can be done in more than one way.)
The MONIC least common multiple of $\mathrm{f}(\mathrm{x})=x^{5}-x^{4}-x^{2}+x$ and $\mathrm{g}(\mathrm{x})=2 x^{4}-2 x^{3}-x$ is
$\mathrm{L}(\mathrm{x})=$ _ $\left(\frac{2 x^{3}}{7}-2 x^{2}-1\right)^{*}(\ldots)$. [Do not multiply this out.]
9. A walkway is paved with a row of blue bricks that are each 32 inches long alongside a parallel row of yellow bricks that are each 22 inches long. At each end of the walkway the ends of the bricks are perfectly lined up.
a. (4 points) How many yellow bricks are in the walkway?
b. (3 points) How many blue bricks are in the walkway?
c. (3 points) How long (in inches) is the walkway?

**

Exam 3:

Math 110-001, 002, 005 November 16, 2007

Instructions: (omitted)

1. (10 points) Suppose $A=(3,7)$ and $B=(5,11)$. SHOW YOUR WORK.

Give parametric equations, $x(t), y(t)$ for the line passing through A and B
$x(t)=$ \qquad
$y(t)=$ \qquad
2. (10 points) If the line L is described by the parametric equations $\mathrm{x}(t)=2 t+1, \mathrm{y}(t)=4 t-3$ then the slope-intercept equation of L is $y=$ \qquad x + \qquad . SHOW YOUR WORK.
3. (10 points) Give parametric equations for the perpendicular bisector of the line segment with end points $\mathrm{A}=(3,7)$ and $\mathrm{B}=(5,11)$ SHOW YOUR WORK.
$x(t)=$ \qquad
$y(t)=$ \qquad
4. (10 points) The graphs of a line L and a parabola P are given in the diagram below.

Circle the correct response. If there is insufficient information then circle " I " You do not need to show work for this problem.
(a) If L is the graph of $y=m x+b$ then:
i. The sign of m is: $+\quad-\quad 0 \quad \mathrm{I}$
ii. The sign of $-\frac{b}{2 a}$ is: $+\quad 0 \quad$ I
iii. The sign of $-\mathrm{b} / \mathrm{m}$ is: $+\quad-0 \quad \mathrm{I}$
(b) If P is the graph of $y=a x^{2}+b x+c$ then
i. The sign of a is: $+\quad-0$ I
ii. The sign of b is: $+\quad-\quad 0$ I
iii. The sign of $b^{2}-4 a c$ is: $\quad+\quad-\quad 0 \quad \mathrm{I}$
iv. The sign of c is: $+\quad-0 \quad \mathrm{I}$
v . The sign of b is: $+\quad-\quad 0 \quad \mathrm{I}$
vi. If r_{1} and r_{2} are the values of x such that $a x^{2}+b x+c=0$ then the sign of $\frac{r_{1}+r_{2}}{2}$ is: $+\quad-\quad 0$ I
vii. The sign of the largest possible value of $a x^{2}+b x+c$ is: $+\quad-\quad 0 \quad \mathrm{I}$

5. (10 points) A line with slope 5 is perpendicular to the line which passes through the points $(1,-2)$ and $(6, t)$. The value of t is \qquad SHOW YOUR WORK.
6. The line L is given parametrically by the equations $\mathrm{x}(t)=3 t+4, \mathrm{y}(t)=4 t+7$ C is the circle of radius 10 with center at $(4,7)$.
(a). (8 points) What are the values of the parame ter t which correspond to the points on L at which L meets C? SHOW YOUR WORK.

(b). (2 points) What are the points of intersection of the line L and the circle C ? Be sure to give both coordinates for each.
SHOW YOUR WORK
7. (10 points) The line L is decribed parametrically by the equations $\mathrm{x}(t)=t+3, \mathrm{y}(t)=-2 t+3$. The line M is described parametrically by the equations $\mathrm{x}(s)=-s+2, \mathrm{y}(s)=3 s+4$. Find the point of intersection of L and M.
SHOW YOUR WORK.
8. The right triangle with sides of length 2 and 3 feet is expanded by adding a number x to each side. The area of the extended triangle is 45 equare feet.
(a) (6 points) Determine a quadratic equation $a x^{2}+b x+c=0$ for which the unknown x is a solution. SHOW YOUR WORK

(b)(4 points) What is the value of x ? SHOW YOUR WORK.
9. (10 points) The parabola P is the graph of $y=x^{2}+b x+c$. If $(-1,9)$ and $(1,3)$ are on P then $\mathrm{b}=$ \qquad and $\mathrm{c}=$ \qquad

Instructions: (omitted)
1.
(a) (5 points) If $A=2-3 i$ is a complex number then $\frac{1}{A}=\square+\frac{3}{13} i$ SHOW YOUR WORK.
(b) (5 points) Enter a complex number $a+b i$ in the blank. Here a and b are rational numbers (which might or might not be whole numbers) (SHOW YOUR WORK!)
If X is a complex number such that $(2-3 i) X=29-11 i$ then $\mathrm{X}=7+$ \qquad i
(2) (10 points) $\{3 x-5 y=8,2 x-4 y=4\}$ is a system of two linear equaitons in the variables x and y .
Use Cramer's Rule to show that $x=6$. Note you must use Cramer's Rule to get credit for the problem. (SHOW YOUR WORK!)
3. SHOW YOUR WORK!
a) (5 points) If $(3 a-2 b)^{7}$ is expanded and simplified then the coefficient of $a^{3} b^{4}$ will be \qquad (SHOW YOUR WORK!)
(b) (5 points) If $(x-y)^{19}$ is expanded and simplified then the coefficeint of $x^{2} y^{17}$ will be (SHOW YOUR WORK!)
4.
a. (4 points) Complete the Arybhata algorithm table and use it to answer the questions below: SHOW YOUR WORK.

$$
\left[\begin{array}{cccc}
& 1 & 0 & 115 \\
-1 & 0 & 1 & 85 \\
-1 & 1 & -1 & 30 \\
--1 & - & -4 & - \\
- & -17 & 23 & 0
\end{array}\right]
$$

b. (2 points) The GCD of 115 and 85 is $\mathrm{d}=$ \qquad
c. $(2$ points $) \mathrm{d}=$ \qquad *115 + \qquad * 85
d. (2 points) The least common multiple of 115 and 85 is \qquad
5. Suppose you have a large collection of 26 gram weights and another large collection of 34 gram weights.
(a) (7 points) You have a pan balance and, as indicated in the diagram you want to use it to check that the weight of an object is exactly
38 grams. Use the table below to explain how to do this.
Note the object is in the right pan so you must describe how many of each kind of weight to add to each pan so that it is guaranteed to balance.

In the left pan place \qquad 26 gram weights and \qquad 34 gram weights.

In the right pan place the 38 gram object together with \qquad 26 gram weights and
\qquad 34 gram weights
b. (3 points) Explain why it is not possible to check the weight of a 21 gram object with this set of weights.
6.

A line L has two coordinate systems. In one system the coordinates of a point P on the line are represented by the variable x and $\mathrm{P}=\mathrm{P}(1)$ would denote that the x -coordinate of P is 1 . In the other system the coordinates are represented by the variable x^{\prime} and for thar system $P=P^{\prime}(-$ 1) would denote that the x^{\prime} coordinate of P is -1 . The origin in x - coordinates is the point O and the unit point in x - coordinates is the point P. The origin in x ' coordinates is A and the unit in x^{\prime} coordinates is B . As indicated in the table we have $\mathrm{O}=\mathrm{O}^{\prime}(2)$. Also, as indicated in the table, we have $\mathrm{A}=\mathrm{A}(4)$ and $\mathrm{B}=\mathrm{B}^{\prime}(-2)$

$$
\left[\begin{array}{ccc}
\text { point } & x \text {-coordinate } & x \text { ' coordinate } \\
\mathrm{O} & 0 & 2 \\
P & 1 & -1 \\
A & 4 & - \\
B & - & -2
\end{array}\right]
$$

i. (3 points) Find a and b such that $\mathrm{x}^{\prime}=\mathrm{a} \mathrm{x}+\mathrm{b}$ is a formula for determining the x^{\prime} coordinate of a point from the x coordinate of that point: SHOW YOU RWORK
$\mathrm{a}=$ \qquad
$\mathrm{b}=$ \qquad
ii. (4 points) Fill in the missing entries in the table. SHOW YOUR WORK
7. Suppose A and B are angles such that
$\sin (\mathrm{A})=.975 \quad \cos (\mathrm{~A})=-.222$
$\sin (\mathrm{B})=.663 \cos (\mathrm{~B})=.748$ then:
a. (2 points) $\quad \sin (A+B)=$ \qquad
b. (2 points $) \quad \cos (\mathrm{A}-\mathrm{B})=$ \qquad
c. $(2$ points $) \tan (\mathrm{A})=$ \qquad
d. $(2$ points $) \quad \sin (\mathrm{P} / 2-\mathrm{A})=$ \qquad
e. $(2$ points $) \quad \csc (A-B)=$ \qquad
8. YOU DO NOT NEED TO JUSTIFY ANSWERS IN THIS PROBLEM.

The graphs of a line L and a parabola P are given in the diagram below. Refer to the diagram and enter a "+", "-", oe "0" in each blank.
(a) If L is the graph of $y=m x+n$ then
i. The sign of m is \qquad
ii. The sign of n is \qquad
iii. The sign of $-\mathrm{n} / \mathrm{m}$ is \qquad
(b) If P is the graph of $y=a x^{2}+b x+c$ then
i. The sign of a is \qquad
ii. The sign of b is \qquad
iii. The sign of $b^{2}-4 a c$ is \qquad
iv. The sign of c is \qquad
v. The sign of $-\frac{b}{2 a}$ is \qquad
vi. If r_{1} and r_{2} are the values of x such that $a x^{2}+b x+c=0$ then the sign of $\frac{r_{1}+r_{2}}{2}$ is
vii. The sign of the smallest possible value of $a x^{2}+b x+c$ is \qquad

9. SHOW YOUE WORK

The line L is given parametrically by the equations: $\quad \mathrm{x}(t)=-3 t+1, \quad \mathrm{y}(t)=2 t-5$.
The equation of the line M is $\quad y=-\frac{x}{2}+5$.
a. (5 points) The point of intersection of L and M is (\qquad _)
b. (5 points) M has the equation $\mathrm{y}=$ \qquad X + \qquad
10. Suppose $A=(-4,9)$ and $B=(2,6)$. SHOW YOUR WORK
a. (5 points)Give parametric equations, $x(t), y(t)$ for the line passing through A and B (There is more than one correct answer to this question.)
$\mathrm{x}(\mathrm{t})=$ \qquad $y(t)=$ \qquad
b. (5 points) The point on the line through $A=(-4,9)$ and $B=(2,6)$ which is between A and B and whose distance from A is $\frac{1}{3}$ of the distance from A to B is (\qquad ,
\qquad _)

11. SHOW YOUR WORK.

At an unknown distance from its base, the top of a tower subtends an angle B which measures 60 degrees. From a distance along a line through the tower base and the first observation point and 200 feet further away the top of the tower subtends an angle A which measures 45 degrees

a. (5 points) The height of the tower is \qquad feet.
b. (5 points) The distance from the vertex of the angle A to the base of the tower is \qquad feet.

12. SHOW YOUR WORK!

a. (5 points) In the triangle ABC (as represented in the diagram) the angle B is .430 radians, the side BC has length 20 and the side AB has length 21. The length of the side AC (the one opposite the angle B) is \qquad .

b. (5 points) In the triangle ABC (as represented in the diagram) the angle A is 39 degrees, the side AB has length 23, and the angle B measures 33 degrees. The length of the side AC (the one opposite the angle B) is \qquad . SHOW YOUR WORK!

Copyright 2007-2008, Department of Mathematics, University of Kentucky. Personal copies of this document are freely permitted.

